制作見本

全学年（全教科）対応 短納期•高品質な製品英語•数学（算数）•国語•理科•社会

数学•算数

組版見本
イラスト・図版見本

WORKS 組版 高校数学

Section 22 次関数のグラフ

要 点 整 理

（a） 2 次関数：y が x の 2 次式で表されるとき，y は x の 2 次関数であるという。一般に，x の 2 次関数 $f(x)$ は，次の形に表される。
$f(x)=a x^{2}+b x+c \quad(a, b, c$ は定数で $a \neq 0)$
（b） 2 次関数のグラフ
1）$y=a(x-p)^{2}+q(a \neq 0)$ の グラフ：$y=a x^{2}$ のグラフを x 軸方向に $p, ~ y$ 軸方向に q だけ平行移動したもので， (p, q) を頂点，直線 $x=p$ を軸とする放物線となる。

$a>0$ ならば下に凸，$a<0$ ならば上に凸である。
※ グラフの平行移動：$y=f(x)$ のグラフを，x 軸方向に $p, ~ y$ 軸方向 に q 平行移動させて得られるグラフの方程式は，$y-q=f(x-p)$
2）$y=a x^{2}+b x+c \quad(a \neq 0)$ のグラフ：平方完成により，$y=a(x-p)^{2}+q$ の形（標準形）に式変形する。
$a x^{2}+b x+c=a\left(x^{2}+\frac{b}{a} x\right)+c=a\left(x+\frac{b}{2 a}\right)^{2}-a\left(\frac{b}{2 a}\right)^{2}+c$
$=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a}$
$y=a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a}$ は，$y=a x^{2}$ のグラフと合同
な放物線で，y 軸と点 $(0, c)$ で交わる。
頂点：$\left(-\frac{b}{2 a},-\frac{b^{2}-4 a c}{4 a}\right)$ 軸 ：$x=-\frac{b}{2 a}$
（c） 2 次関数の決定：与えられた条件から 2 次関数の式を決定するには，条件 に応じて出発点におく式の形を使い分けるのがよい。
1）頂点が $(p, q): y=a(x-p)^{2}+q$ とおく。
2）x 軸と 2 点 $(\alpha, 0),(\beta, 0)$ で交わる：$y=a(x-\alpha)(x-\beta)$ とおく。
3） 3 点 $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ を通る：$y=a x^{2}+b x+c$ とおく。

組版 高校数学

例題2 次の 2 次関数のグラフの頂点と軸を求め，そのグラフを描け。
（1）$y=x^{2}-2 x+1$
（2）$y=-x^{2}-4 x-3$
（3）$y=\frac{1}{2} x^{2}-2 x+1$

解答

いずれも，まずは標準形＂$y=a(x-p)^{2}+q$＂に変形する。
（1）$y=(x-1)^{2}$ 頂点：$(1,0)$ 軸：$x=1$
（2）$y=-\left(x^{2}+4 x\right)-3=-(x+2)^{2}+4-3=-(x+2)^{2}+1$
頂点：$(-2,1)$ 軸 ：$x=-2$
（3）$y=\frac{1}{2}\left(x^{2}-4 x\right)+1=\frac{1}{2}(x-2)^{2}-\frac{1}{2} \cdot 4+1=\frac{1}{2}(x-2)^{2}-1$
頂点：$(2,-1)$ 軸：$x=2$
よって，グラフはそれぞれ次のようになる。
（1）

（2）

（3）

围｜習｜園虽

2－1 次の 2 次関数のグラフを描け。また，軸と頂点を答えよ。
（1）$y=(x+1)^{2}-3$
（2）$y=-(x+2)^{2}+3$
（3）$y=\frac{1}{2}(x-2)^{2}-1$
（4）$y=-2(x-1)^{2}+2$

2－2 $\quad y=2(x-3)^{2}+1$ のグラフを，次のように平行移動してできる放物線は，どのよ うな 2 次関数のグラフになるか。
（1）x 軸方向に $4, ~ y$ 軸方向に 5
（2）x 軸方向に $-3, ~ y$ 軸方向に 1

2－3 次の 2 次関数のグラフについて，軸の方程式と頂点の座標を求めよ。
（1）$y=x^{2}-2 x+4$
（2）$y=2 x^{2}+8 x+3$
（3）$y=-x^{2}+3 x$

第2講 三角比の拡張（1）

（1）座稀によ
钝角について定垬した三角比を， 0° 以上 180° 以下にまて始要しよう。

r の半円尝挺言，この半円上の点 $(r, 0)$ を A とする。半円の周上に $\angle \mathrm{AOP}=\theta$
となる点 $\mathrm{P}(x, y)$ をとる。

$0^{\circ} \leq \theta \leq 180^{\circ}$ を满たす θ に対する三角比

$$
\sin \theta=\frac{y}{r}, \cos \theta=\frac{x}{r}, \tan \theta=\frac{y}{x}
$$

［2］半得が 1 の半円と三角比
原点 0 を中心とする半路 1 の半円の瓜の上に点 $\mathrm{P}(x, y)$ をと ， OP と x 桷の正方向とのなす解を θ とすると，

ここで， $0 \leq y \leq 1,-1 \leq x \leq 1$ であるから
$0 \leq \sin \theta \leq 1,-1 \leq \cos \theta \leq 1$

$$
\tan \theta=\frac{y}{x}=\frac{m}{1}
$$

よって，
$\tan \theta=m$

 $\tan \theta$ はすべての実数値をとる
（3）等式を满たす θ

（1） $\cos \theta=\frac{1}{2}\left(0^{\circ} \leq \theta \leq 180^{\circ}\right)$ を常たす θ を求わるには，半円 C 上の点て （ x 糜需）$=\frac{1}{2}$
となる点Pをとる。
$\theta=\angle \mathrm{AOP}=60^{\circ}$

（ii） $\tan \theta=m$ については，直緗 $x=1$ 上の点 $\mathrm{T}(1, m)$ を考える。
（例 $\tan \theta=\sqrt{3}\left(0^{\circ} \leq \theta \leq 180^{\circ}\right)$ を㴖犬す θ を求めるには，真䌇 $x=1$ 上の点 $\mathrm{T}(1, \sqrt{3})$ をとる。
$\theta=\angle \mathrm{AOT}=60^{\circ}$

基本事項チェック問題（てきた間題はチエックを入れよ））

$f(x+y)=f(x)+f(y)+x y$
を满たす。 $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)+x+1}{2 x}=1$ たあると き，
（1）$f(0)$ の值を求め上。
（2）$f^{\prime}(0)$ の作を求わよ
（3）$f^{\prime}(x)$ を求わよ。
（24 次の䦎数を篗分せ上。
（1）$y=\left(1-x^{2}\right)^{2}$
（2）$y=\left(\frac{x}{1+x}\right)^{2}$
（3）$y=\frac{\sqrt{x+1}}{x}$
\square B
（1）$x=y^{2}+2 y+1 \quad(y<-1)$ について，$\frac{d y}{d x}$ を x を用いて圭世，
（2）$\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ のとき，$x=a, y=b(b \neq 0)$ における $\frac{d y}{d x}$ の值を求わよ．
（3）$\sqrt{x}+\sqrt{y}=1$ のとき，$\frac{d y}{d x}$ を x, y を用いて袁せ．犬だし，$x \neq 0$ とする。

Д（4）
（1）$x=t+\frac{1}{t}, y=t-\frac{1}{t}$ のとき，$\frac{d y}{d x}$ を x, y を用いて袁せ．
（2）n 学自然数とするとき，$x e^{ \pm}$の第 n 次学园数を求わよ。

（1）$y=e^{x} \sin x$
（2）$y=x^{2}(\log x+1)$
（3）$y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
（4）$y=\left(x^{2}-\frac{1}{x^{2}}\right)^{3}$
（5）$y=2 \sin ^{1} 4 x$
（6）$y=(\log \sqrt{1+x})^{2}$
（7）$y=\sqrt{x+2 \sqrt{x}}$
（8）$y=\frac{x}{\sqrt{x^{2}-2}}$
（9）$y=(\cos 2 x+2) \log \sqrt{\cos 2 x+2}$
（00）$y=\frac{\sin 2 x}{\sqrt{e^{2}+1}}$
（16）次の関数を敌分せ上。
$\begin{array}{ll}\text {（1）} y=x^{\log x} & (x>0) \\ \text {（2）} y=\left(x^{2}+1\right)^{z}\end{array}$
－77 関数 $f(x)=\frac{1}{1+x^{2}}$ について，わのの間いに答えよ，
（1）$\left|f^{\prime}(x)\right|$ の最大侑 M を求か上。
（2）方程式 $f(x)=x$ はただ 1 つの実数解をもっことを示せ。
（3）平均值の定理を用いて，実颣 x, y に対して $|f(x)-f(y)| \leq M|x-y|$ が成り立つことを示せ。
（4）β を方程式 $f(x)=x$ の実数解とする。数列 $\left\{a_{\epsilon}\right\}(n=1,2,3, \ldots \ldots)$ を敝化式 $a_{a+1}=f\left(a_{k}\right)$ て定わるとき，a_{3} がとんな実数ですってる $\lim _{\alpha \rightarrow \infty} a_{\epsilon}=\beta$ となることを示せ。
 ただし，p は正の定数て，e は自棼対数の底である。

】（9）関数 $f(x)=(x+2) e^{\frac{1}{z}} \quad(x \neq 0)$ について，次の間いに答え上，さだし，e は自然対数の庭である。
 $y=f(x)$ のダラフの験を柇を描け．
（2）右制办らの楼限值 $\lim _{x \rightarrow 0} \frac{3-f(x)}{1+2 f(x)}$ 索求め上。
（3）株险信 $\lim _{x \rightarrow 1} \frac{3-f(x)}{1+2 f(x)}$ は在在するか，存在するならばその詣を求か，在在しない ならばての理由を速べよ

沖縄教育プロゴエシヨン株式会社

WORKS 組版 中学数学

右の図のような直角三角形 ABC を，直線 ℓ を軸として 1 回転きせて てきる立体の体皘を求めなさい。

求める図形の体積は，円柱の体積から円錐の体皘をひけばいいのて，

$$
(4 \times 4 \times \pi \times 6)-\left(4 \times 4 \times \pi \times 6 \times \frac{1}{3}\right)=64
$$

となります。

右の図のように，底面の直径が 6 cm ，高さが 4 cm の円錐に，球が内接しています。この球の体積を求めなさい。

径が 6 cm ，高さが 4 cm の円錐に，球が積を求めなさい。

右の図のように，円䧾の頂点と球の中心を通る平面て切っ た切りロで考えます。

円が内接している三角形を三角形 ABC ，円の中心 を○とします。三平方の定理より，

$$
\mathrm{AB}=\sqrt{4^{2}+3^{2}}=5 \mathrm{~cm}
$$

とわかります。
また，三角形 ABC は $\mathrm{AB}=\mathrm{AC}$ の二等辺三角形なのて，

$$
\mathrm{AC}=5 \mathrm{~cm}
$$

となります。
円の半径を r として，三角形 ABC の面積について考えると，
三角形 $\mathrm{ABC}=6 \times 4 \times \frac{1}{2}=12 \quad \cdots$（1）
三角形 $\mathrm{ABC}=$ 三角形 $\mathrm{ABO}+$ 三角形 $\mathrm{BCO}+$ 三角形 ACO

$$
\begin{aligned}
& =5 \times \mathrm{r} \times \frac{1}{2}+6 \times \mathrm{r} \times \frac{1}{2}+5 \times \mathrm{r} \times \frac{1}{2} \\
& =8 \mathrm{r} \cdots(2)
\end{aligned}
$$

（1）＝（2）より，
$12=8 \mathrm{r}$
$r=\frac{3}{2}$ とわかります。
よって，内接する球の体積は，

$$
4 \times \pi \times\left(\frac{3}{2}\right)^{3} \times \frac{1}{3}=\frac{9}{2} \pi
$$

となります。

組版 中学数学

右の図のように，$\triangle \mathrm{ABC}$ と $\triangle \mathrm{ABD}$ が円に内接しています。
$\triangle \mathrm{ABC}$ が二等辺三角形のとき，$\triangle \mathrm{BPA} \propto \triangle \mathrm{BAD}$ であることを証明しなさい。

円に内接しています。 $\mathrm{A} \leadsto \triangle \mathrm{BAD}$ であることを
＊居え（証明）$\triangle B P A$ と $\triangle B A D$ において
$\widehat{A B に}$ 対する円周角より，$\angle A D B=\angle A C B$

$\triangle A B C$ が二等辺三角形より，$\angle B A P=\angle B C A$
（1）
（1）（2）より，$\angle \mathrm{BAP}=\angle \mathrm{ADB}$
共通な角より，$\angle P B A=\angle A B D$
（3）4）より，
2組の角がそれぞれ等しいのて，
$\triangle B P A c \triangle B A D$

沖縄教育プロゴエシヨン株式会社

WORKS 組版 算数

えを みて \square に かずを かきましょう。

（1）きが \square ほん あります。
（2）くるまが \square だい あります。
（3）ねこが \square ひき います。
（4）ひとが \square にん います。
（5）とりが \square わ います。
（6）いえが \square けん あります。

えを みて \square に かずを かきましょう。

（1）きが \square ほん あります。
（2）くるまが \square だい あります。
（3）いぬが \square ひき います。

（5）とリが \square わ います。
（6）いえが \square けん あります。

えを みて \square に かずを かきましょう。

（1）きが \square ほん あります。
（2）くるまが
（3）いぬが

（4）ひとが
（5）とりが
（6）いえが \square

いちばん おおいのは どの たべもの てしょう。
いろを ぬって かんがえましょう。

いちばん おおいのは どの たべもの
でしょう。
いろを ぬって かんがえましょう。

いちばん すくないのは どの たべもの
でしょう。いろを ぬって かんがえましょう。

いちばん すくないの

$\begin{aligned} & b \\ & b \\ & b \\ & b \\ & b \end{aligned}$	0 0 0 0
$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
リスご	

1 次の数を入れましょう。また，はらいましょう。
（1） 787

（2） 451890

（3） 7.91

（4） 63.07

Ti民\｜iR
 $\pi 11\|\| i l l$

（5） 0.002

패ㅆㅠㅠ

1 次の問いに答えましょう。
（1） 5.1 kg の米を 6 人に等分すると， 1 人分は何 kg になりますか。

（2） 1 kg の肉を 8 人に等分すると， 1 人分の重さは何 kg になりますか。

2 次の問いに答えましょう。
（1） 40.9 g のさとうを， 8 g ずつスプーンに分けます。さとうが入ったスプーンは何本てきて，何 g あまりますか。

（2） 9.4 dL の牛乳を， 1 人分が 2 dL になるように分けていきます。何人に分けることがてきて，何 dL あ まりますか。

沖縄教育プロゴエシヨン株式会社

WORKS 図版•数学

沖縄教育プロヨ゙コシヨン株式会社

WORKS ィラスト・算数

是 5

